Using generative modelling to produce
varied intonation for speech synthesis
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Our model can produce more
varied intonation without
sacrificing naturalness
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Overview

Normal speech synthesis voices
produce average prosody

Most methods to alleviate this reduce

the naturalness of the voice

Our method can produce multiple

renditions of a sentence

We demonstrate that our model's
output Is significantly more varied but

not at the expense of naturalness
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6. Pairwise preference

Q: “Choose which clip has more varied

Intonation”

54.4% 45.6%| RNN
54.8% 45.2%

70.4% 29.6%| MDN
64.6% 35.4%| VAE—TAIL
52.9% 47.1%| COPY—SYNTH
59.4% 40.6%| RNN
74.4% 25.6%

80.2% 19.8%| MDN
66.2% 33.8%| VAE—TAIL
72.7% 27 .3%| RNN
83.1% 16.9%

77.7% 22.3%| MDN
84.4% 15.6%| RNN
80.2% 19.8%

80.4% : 19.6%| RNN

0 25 50 75 100

5_ T L L L L L
| | | | | |
| l l l l l
| | | | | |
A | 1 1 1 1 1 I
% | 3.94
= : 3200  [3:25 3.21 314
= l
= 2 96 2.73 |
Z - - I
2 I I I I I '
| | | | | |
| | | | | |
l l l l l :
1= S,
NE o N PN \S \\S g s
s cOY

Q: “Rate the naturalness of each clip”

Listening tests

We evaluate naturalness and
variedness, allowing us to compare
the trade-off between these factors

We predict FO and use parameters
from natural speech for synthesis

Subjective and objective FO variation
do not directly correspond, therefore
VAE-TAIL and RNN-SCALED were

calibrated by ear to match the level
of variation in COPY-SYNTH
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5. Subjective vs. objective intonation variation
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8. Relative variedness

(derived from pairwise preference results)

H
oy NTH
4 coPY—SETS
A
O
s
av)
4+
= OTRNN LED
= RNN/SCA o
-
<
* 2 1
= 5| BASELINE
1 +—flat Relative variedness varied —

9. Naturalness—Variedness tradeoftf

VAE-TAIL has same naturalness as other TTS
voices, but iIs much more varied



