
Investigating the Robustness of Sequence-to-Sequence 

TTS models to Imperfectly-Transcribed Training Data

Jason Fong, Pilar Oplustil Gallegos, Zack Hodari, Simon King

1. Motivation: Can seq2seq TTS handle transcription errors?

3. Model architecture: Fully convolutional + autoregressive

4. Results: Naturalness and frequency of mispronunciations

• Seq2seq can generate high quality speech 

• But needs large amounts of data

• Could use found data (i.e. audiobooks)

• But, then transcription errors are common

• Previous approaches typically excluded such data

• Does seq2seq TTS need such data cleaning?

• Goal: Investigate robustness of seq2seq TTS to transcription errors

• Method: Train on corrupted transcripts

6. Conclusion 

2. Simulating transcription errors to create our training sets

Corruption type Result of corruption
Clean In being comparatively modern

1. Addition In being region comparatively sailed modern

2. Deletion _ being ____________ modern

3. Replacement Eg being strengthening modern

4. ASR (34.8%WER) Indie comparatively modeled

To create corrupted transcripts to train on, we artificially 

corrupted 50% of the training transcript in 1 of 4 ways (LJSpeech):

We also trained on clean transcripts consisting of 50% and 100% 

of the original dataset. Thus we had the following training sets:

word boundaries, punctuation, and the start/end of sentences.
Average sentence length is 17 words (100 characters).

4. Simulating Transcription Errors

To control the experimental conditions of our investigation, we
deliberately corrupt LJ Speech transcriptions to simulate man-
ual and automatic annotation errors.

4.1. Simulating errors in manual transcription

We devised three methods for corrupting the text of a sentence
that simulate word-level transcriber (or speaker) errors.
• Add 5 words: 5 words (length [-1,+1] around the mean 7)

from the vocabulary are inserted at random positions.
• Delete 5 words: 5 random words are deleted from each sen-

tence (but leaving a minimum of 1 word).
• Replace 5 words: 5 random words are each replaced by a

word of equal length sampled from another sentence.

4.2. Simulating errors in automatic transcription

We ran the audio for each utterance through a typical HMM–
DNN ASR system, and took the top 50 hypotheses from the
lattice. We calculated the word error rate (WER) for each of
the 50 hypotheses and chose that with the highest WER per ut-
terance. ASR errors include insertions, deletions, and substitu-
tions. In contrast to the method in Section 4.1, ASR errors are
acoustically-plausible; e.g., “in being comparatively modern”
! “indie comparatively modeled”.

5. System description

Our model is a modified version of the deep-convolutional TTS
system (DC–TTS) [14], a convolutional encoder-decoder with
an autoregressive structure in the decoder2.

To simplify training, we follow standard DC–TTS pro-
cedure by training two separate models independently on the
ground truth. The S2S portion of the model, called text-to-Mel
(T2M), predicts ‘coarse’ 80-band Mel filter banks (MFB) from
graphemes. This intermediate representation is extracted from
the ground truth magnitude spectrogram (80 frames per second)
using; pre-emphasis, Mel-scale bins, and timescale reduction
by factor of 4 (resulting in a frame rate of 20). Following T2M,
the spectrogram super-resolution network (SSRN) uses trans-
posed convolutions to reconstruct the full-resolution magnitude
spectrogram. Placed in sequence, these two models perform
grapheme to magnitude spectrogram prediction.

DC–TTS contains 4 trainable modules, shown in blue in
Figure 1. The T2M model comprises three modules that to-
gether predict the coarse MFBs Ŷ , and are trained separately
from SSRN.

• TEXTENC: Encodes N one-hot characters to a sequence of d
dimensional keys K and values V for use in attention query-
ing (normally, attention learns a projection V ! K).

• AUDIOENC: Encodes t coarse MFB frames to d dimensional
queries Q0:t, where t is the current decoder timestep.

• ATTENTION: Multiplicative attention [15] which determines
the alignment A0:t = softmax(K>Q0:t ⇤

p
d) used to cal-

culate the result R0:t = A0:tV . For synthesis, attention is
forced to be monotonic and can only skip forward a maxi-
mum of 3 encoded characters per decoder time-step.

2Our implementation is based on
https://github.com/Kyubyong/dc_tts

TextEnc

AudioEnc

SSRN

Griffin-Lim

TextEnc

AudioEnc

AudioDec

Monotonic 
Attention

SSRN

Griffin-Lim

Coarse MFB

Characters Characters

t = 1 : T

Training Synthesis

AudioDec

Attention

L1:N

K1:NV1:N

Q1:TR1:T

Y1:T

Ŷ1:T 
 Ŷ1:t 

L1:N

V1:N K1:N 

Q1:tR1:t 

Ŷt 

Coarse MFBCoarse MFBCoarse MFB

Magnitude
spectrogram

Magnitude
spectrogram

Figure 1: DC–TTS architecture. Blue: learned modules. Grey:
operations. Green: inputs. Orange: predictions. Plate notation
over t = 1 : T denotes the autoregressive loop at synthesis
time.

• AUDIODEC: Predicts the current coarse MFB frame Ŷt

(which should match the target Yt) using R0:t and Q0:t.
• SSRN: Upsamples the coarse MFB in time by a factor of 4

using transposed convolutions and reconstructs fine-grained
frequency domain information.

• GRIFFIN-LIM: Finds a plausible phase spectrogram [16] for
the magnitude spectrogram predicted by SSRN. After post-
emphasis, an inverse FFT reconstructs the waveform.

At a low level, DC–TTS performs many 1-dimensional con-
volutions, these are also used to create highway layers [17] and
transposed convolutions (called deconvolutions in [14]). While
RNNs maintain current context using a hidden state, in DC–
TTS context must be modelled either by convolution’s recep-
tive field, or by attention’s summarisation of V . The modules
within the autoregressive part of T2M – i.e., AUDIOENC and
AUDIODEC – make use of causal convolutions, because for
synthesis we cannot make use of future acoustic context. As
TEXTENC and SSRN have access to future context (characters
or coarse MFBs), they use non-causal convolutions.

Our model architecture closely resembles that in [14], ex-
cept that: we do not use guided attention; we perform layer
normalisation immediately after all (non-transposed) convolu-
tions; and dropout rate is 0.05. Starting from 0.001, our learn-
ing rate was increased linearly for the first 4000 batches, and
then decayed proportional to the inverse square of the number
of batches [18, Sec 5.3], where our batch size is 16. The two
models are trained using Adam [19] with an L1 loss and binary
divergence (equally weighted) on their respective predictions –
coarse MFB (Ŷ ) for T2M, magnitude spectrograms for SSRN.

6. Evaluation

6.1. Hypotheses

Table 1 lists our hypotheses when using training data with tran-
scripts corrupted by the methods in Section 4.

6.2. Systems built for evaluation

To test these hypotheses we built six S2S-TTS systems, and a
reference voice. Using each of the data corruption methods,

Table 1: Hypotheses

Clean vs corrupted data
H1 Systems trained on clean data are better than those

trained on corrupted data.

Amount of data
H2 Systems trained with more data are better than those

trained on less data.

Relative performance between corruption methods
H3 Systems trained on data corrupted by Add 5 words will

be best because attention will learn to skip added words.
H4 Systems trained on data corrupted by Delete 5 words

will be worse than for Add 5 words because attention
will not find any relevant information in the input se-
quence to explain certain acoustic frames.

H5 Systems trained on data corrupted by Replace 5 words

will be worst of all because attention will be forced to
use incorrect input to explain certain acoustic frames.

H6 Systems trained on ASR transcription output will be
better than Replace 5 words and Delete 5 words be-
cause attention will find plausible (albeit not entirely
correct) input to explain all acoustic frames.

we created four versions of corrupted transcripts, and for each
of these we trained a separate DC-TTS system. Only 50% of
the sentences were corrupted (all even-numbered ones). A fifth
system was trained with the full uncorrupted dataset. A sixth
system was trained on half of the sentences (all odd-numbered
ones) in the full dataset. This means that all training sets in-
cluded the same uncorrupted half of the full dataset, with the
remaining half being either uncorrupted, corrupted, or removed.
The system names and data used for training them were:

T2Mclean–100: the full uncorrupted LJ Speech data.
T2Mclean–50: half of the full data.

T2MADD: corrupted with Add 5 words

T2MDEL: corrupted with Delete 5 words

T2MREPL: corrupted with Replace 5 words

T2MASR: corrupted by ASR, which has an average WER
of 34.8% for corrupted sentences.

REF: copy synthesis obtained by running ground
truth coarse Mel filter banks through the SSRN
model and then reconstructing waveforms with
Griffin-Lim.

All systems were trained for 250 epochs, except
T2Mclean–50, which was trained for 500 epochs. This ensured
that the number of model updates during training was kept con-
stant across the systems. The systems were trained using letters
as input to the DC–TTS model. To synthesise the test sentences,
all models used the same SSRN model, which had been trained
for 500 epochs on all of the acoustic data (recall that this model
is not dependent on transcriptions, so is independent of any cor-
ruptions).

6.3. Evaluation methodology: MUSHRA-like test

For each model we generated all 278 sentences from chapter 50
of the LJ Speech data set3 which is not in the training or valida-
tion sets. We removed all sentences with acronyms because our

3Speech samples are available at
https://jonojace.github.io/IS19-robustness

Figure 2: MUSHRA results. Solid red lines are medians, dashed
green lines are means (also given in figures), blue boxes show
the 25th and 75th percentiles, and whiskers show the range of
the ratings, excluding outliers which are plotted with +.

systems have no mechanism to handle these, and all pronounced
them poorly. From the remainder, we randomly selected 40 sen-
tences for the listening test that were within a range of [-4,+4]
words from the mean sentence length (across the full corpus) of
17 words.

We built a MUSHRA-like listening test using BeaqleJS4,
following the same framework as in [20] but without a lower
bound anchor. Listeners were instructed to listen first to the ref-
erence for each screen, that this reference was hidden among
the test sentences, and that they should rate the quality of each
stimulus relative to the reference. Quality was intended to cap-
ture naturalness and intelligibility, so participants were given
the correct text on each screen. Participants could not proceed
to the next screen until they had listened to all the stimuli and
rated at least one of them at 100. The order of the systems on a
screen and the order of screens per participant were randomised.
35 native English paid participants completed the test.

7. Results

MUSHRA results are in Figure 2. The hidden reference (REF)
was consistently found by listeners and correctly scored at 100.

To determine which pairs of systems are significantly dif-
ferent, we use Student’s t-test between all 21 systems pairs with
Holm-Bonferroni correction [21] to account for the large num-
ber of comparisons. All pairs were found to be significantly
different at p < 0.0005 except for: T2MREPL vs. T2MASR and
T2MREPL vs. and T2MDEL which differ at p < 0.05; T2MASR
and T2MDEL are not significantly different.

The most surprising result is that T2MADD significantly out-
performed T2Mclean–100 (refuting H1) – see Section 8.1.

T2Mclean–50 significantly outperformed T2Mclean–100 (refut-
ing H2) but we believe this is an unintended consequence of
controlling the amount of training of T2Mclean–50 compared to
the other systems. Since T2Mclean–50 had half the data, we
trained for twice the epochs, in order to obtain the same number
of weight updates. It is clear that this did not work as intended
and future work should find a better training regime.

Of the models trained on corrupted transcriptions, T2MADD
produced the highest quality speech, followed by T2MDEL then
T2MREPL (confirming H3, H4, and H5).

Amongst T2MASR, T2MDEL and T2MREPL, the differences
in quality are small. So, acoustically-plausible mistranscrip-
tions are just as harmful as arbitrary ones (refuting H6).

4
https://github.com/HSU-ANT/beaqlejs

5. Analysis: How attention dealt with different corruption types

Attention matrices for sentence “In being comparatively modern”

T2Mclean100 T2MADD T2MASR T2MDEL T2MREPL
t

n

We also counted mispronunciations per system over the test set.

Interestingly, the ASR system had the fewest errors, so its lower 

quality is likely due to overall degradation of its acoustic model.

• Attention aligns text that has corresponding audio due to 

teacher-forcing

• Attention skips over extraneous text in the input during training 

(ADD)
• Attention is robust to acoustically-plausible text corruptions 

(ASR)
• But attention not robust to missing text (audio output that is 

not explained by any corresponding input) so it attends to all 

input timesteps with roughly uniform probability (DEL and 
REPL)

Takeaways:
• Seq2seq TTS models with attention robust only to certain 

transcription error types

• Training on transcripts produced by high error rate ASR actually 

works to some extent

• Transcribing audio-only data using a low error rate ASR

system could be a viable proposition

Further work: 
• Make seq2seq models robust to all error types

• Add internal mechanism to detect transcription errors?

• Reproduce results on transcripts with real-world imperfections

clean-100 clean-50 ADD DEL REPL ASR

• Seq2seq model: Deep-Convolutional TTS (DCTTS) [1]

• Input is characters and output is coarse mel-spectrogram

• No monotonic attention prior when training because 

monotonicity must be violated to handle transcription errors

[1] Efficiently trainable text-to-speech system based on deep convolutional networks 

with guided attention (Tachibana et al., ICASSP 2018)

MUSHRA-like listening test to evaluate quality of synthesised 

speech after training on corrupted transcripts


