Investigating the Robustness of Sequence-to-Sequence
TTS models to Imperfectly-Transcribed Training Data

Jason Fong, Pilar Oplustil Gallegos, Zack Hodari, Simon King

THE UNIVERSITY

of EDINBURGH

4. Results: Naturalness and frequency of mispronunciations

1. Motivation: Can seg2seq TTS handle transcription errors?

MUSHRA-like listening test to evaluate quality of synthesised

* Seq2seq can generate high quality speech speech after training on corrupted transcripts

 But needs large amounts of data
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2. Simulating transcription errors to create our training sets o ! ! ! ! !
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To create corrupted transcripts to train on, we artificially

.. o We also counted mispronunciations per system over the test set.
corrupted 50% of the training transcript in 1 of 4 ways (LJSpeech):

Sl S Ut o corbren clean-100 | clean-50 | ADD | ASR | DEL | REPL
Clean In being comparatively modern 45 45 51 34 63 68
1. Addition In being region comparatively sailed modern
| | Interestingly, the ASR system had the fewest errors, so its lower
2. Deletion _ being modern

qguality is likely due to overall degradation of its acoustic model.

3. Replacement Eg being strengthening modern

4. ASR (34.8%WER) Indie comparatively modeled

5. Analysis: How attention dealt with different corruption types

We also trained on clean transcripts consisting of 50% and 100%
of the original dataset. Thus we had the following training sets:
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Attention matrices for sentence “In being comparatively modern”
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3. Model architecture: Fully convolutional + autoregressive * Attention skips over extraneous text in the input during training
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Training Synthesis * Attention is robust to acoustically-plausible text corruptions
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* Seq2seq model: Deep-Convolutional TTS (DCTTS) [1]
* Inputis characters and output is coarse mel-spectrogram
* No monotonic attention prior when training because

monotonicity must be violated to handle transcription errors

[1] Efficiently trainable text-to-speech system based on deep convolutional networks
with guided attention (Tachibana et al., ICASSP 2018)

Further work:
 Make seq2seq models robust to all error types

 Add internal mechanism to detect transcription errors?
 Reproduce results on transcripts with real-world imperfections




